在大肠杆菌中高效表达外源蛋白的策略(2)
2007-11-15 21:50:15   来源:本站原创   评论:0 点击:


上述这些发现充分证明,除了SD位点和起始密码子以外,mRNA中的其他序列对于有效的翻译也是重要的。尽管其精确的机制还不太清楚,但有可能利用翻译增强子来达到超量表达蛋白质的目的。
3.mRNA的稳定性
     mRNA的快速降解势必影响蛋白质的产生。因此在这一部分重点阐述决定mRNA稳定性的因素,这将在E.coli高效表达外源基因中有实际应用。在E.coli中有多种不同的RNase参与mRNA的降解,其中包括内切核酸酶(RNase E, RNase K和RNase III)和3’外切核酸酶(RNase II和多聚核苷酸磷酸化酶[PNPase]),目前尚未在原核细胞中发现5’外切核酸酶[110]。mRNA的降解并非由非特异性的外切核酸酶随机剪切而引起,因为在mRNA的长度和半衰期之间并没有反向相关性[111]。已经证明,在E.coli中有两类保护性元件能够稳定mRNA。一类由mRNA的5’UTRs中的序列组成[112];另一类由3’UTRs和多顺反子间区的发卡结构组成[113]。其中一些元件与异源mRNA融合后起稳定剂作用,但只在严格的条件下如此。例如,噬菌体T4基因32的5’UTR在T4噬菌体感染的细胞中延长非稳定mRNA在E.coli中的半衰期[114]。革兰氏阳性菌如金黄色葡萄球菌和枯草杆菌的红霉素抗性基因(erm)编码的mRNA 5’UTR含有稳定元件。但ermC和ermA 5’UTRs的稳定作用需要由抑制翻译和引起核糖体失控的抗生素来诱导[115]。同样,噬菌体λPL对于λPL-trp转录本的稳定作用需要λ噬菌体的感染[116]。与此相反,E.coli ompA转录本能够在细胞快速增殖的正常情况下延长一系列异源mRNA在E.coli中的稳定性[117]。Emory等证明,在接近或紧接ompA 5’UTR的5’末端存在发卡结构对于其稳定效果是必需的。而且可以通过在5’末端添加发卡结构来延长在正常情况下不稳定的mRNA的半衰期[118]。这样看来,对异源基因添加ompA 5’稳定元有可能提高E.coli中的基因表达。另一类由3’UTR组成的mRNA保护性元件能够形成发卡结构,因而能够阻断外切核酸酶从3’末端对转录本的降解[113]。Wong和Chang[119]在苏云金杆菌的晶体蛋白基因的转录终止子中鉴定了一个这样的元件。将该“阳性反调节子”与地衣杆菌的青霉素酶基因(penP)的3’末端和人IL-2 cDNA融合,能够延长mRNA的半衰期,且提高了相应多肽在枯草杆菌和E.coli中的产量。然而,同某些5’稳定元一样,这类3’反向调节子不可能作为一个通用的mRNA稳定元。而且有证据表明,可以通过选用缺乏某些特定RNase如RNaseII或PNPase的宿主菌来提高基因的表达。这同样并非一有效途径。因为缺乏RNaseII或PNPase与RNase过量表达一样,对于E.coli整体mRNA的平均半衰期并无多大影响。而且缺乏RNaseII或PNPase的菌株常常是不稳定的[120,121]。
    4.翻译终止
 在mRNA中存在终止信号是翻译终止过程必不可少的。除了三个终止密码子UAA、UGA、
和UAG外,翻译终止这一复杂事件还包括核糖体、mRNA和终止位点的几种释放因子的特异相互作用[122]。在E.coli中,RF-1在终止密码子UGA处终止翻译;RF-2在UAA密码子处终止翻译[123]。最近还克隆了另外一个因子RF-3[124]。
在设计表达载体时,通常插入三个终止密码子以防止核糖体的跳跃。在E.coli中偏向于使用UAA密码子[125]。一项对于2000多个E.coli基因的统计分析表明,在终止密码子和紧接三联体的核苷酸序列中存在局部非随机性[126]。同时他们还利用体内终止试验测定12个可能的四核苷酸“终止信号”(UAAN、UGAN、UAGN)的终止力量。在体内终止试验中,通过其与框架移位的竞争测定其终止效率。转录效率依据终止密码子和第四个核苷酸而有显著的差异,这种差异从80%(UAAU)到7%(UGAC)不等。这些研究表明,紧接终止密码子后的核苷酸特性强烈地影响E.coli中的翻译终止效率[127]。UAAU是E.coli中最有效的转录终止序列。此外,终止密码子5’末端的邻近序列也影响终止的效率。因此,新生肽中倒数第二位(-2位)C-末端氨基酸残基的电荷和疏水性能引起多达30倍不同的UGA终止效率,而在UAG位的终止对于-2位氨基酸残基的特性不敏感[128]。对于-1位,α-螺旋、β-链和回转倾向是UGA终止中的决定因素[129]。
 
蛋白质靶向
   确定将目的蛋白表达在特定的细胞室,即细胞质、细胞间质或是培养基中,需要权衡各自的利弊。
1.细胞质表达
包涵体的形成仍然是在细胞质中进行基因表达的一个主要障碍。包涵体虽然具有多方面的好处,但这些优越之处与后期繁琐的蛋白重新折叠工作、重叠蛋白的生物活性的未知性以及重叠和纯化后蛋白的总产量降低相比,则显得微不足道。至今尚不明了包涵体形成的精确机制。对于形成和不形成包涵体的81种蛋白质的统计学分析表明,有6个主要的理化指标与此有关。这6个指标是电荷平均数、转变形成的残基组分、半胱氨酸组分、脯氨酸组分、亲水性和残基总数。其中前两个指标与包涵体形成密切相关。一种基于这些指标的模型可以根据某种蛋白质的氨基酸组成来预测包涵体形成的可能性。该模型曾成功地预测人T细胞受体Vβ5.3在E.coli中的可溶性[130] 。

已经建立了多种策略以帮助蛋白质天然空间结构的形成[131]。这些策略包括在较低温度下培养细菌[132],选择不同的E.coli菌株[133],替换某些氨基酸残基[134],与分子伴侣共表达[135,136,137],利用高溶解性的多肽作为共表达分子[138],在山梨糖醇和甘氨酸三甲内盐存在时,以低渗透压培养和诱导细胞[139],改变培养基的pH值[140]。与分子伴侣共表达或许是一种有望提高蛋白质可溶性和折叠效率的途径[141]。但这种策略似乎具有蛋白质特异性[142]。即便在分子伴侣存在的条件下,仍有多种因素使得过量表达的蛋白不能折叠成其天然构象。这些因素包括缺乏二硫键和/或翻译后修饰;细胞质的氧化还原状态妨碍了二硫键的形成。在E.coli中,有两条途径参与二硫键的还原。即硫氧还蛋白系统,该系统由硫氧还蛋白还原酶和硫氧还蛋白组成;谷氧还蛋白系统,该系统由谷胱甘肽还原酶、谷胱甘肽和三种谷氧还蛋白组成[143]。制造次还原细胞质环境,以利于二硫键形成的策略包括选用硫氧还蛋白还原酶(trxB)缺陷的E.coli菌株,这有助于巯基还原势能。
蛋白质在细胞质中被降解的可能性比其他细胞室要大得多。因为在细胞质中含有大量的蛋白酶。另外,从细胞质蛋白混合物中纯化目的蛋白相对比较困难,因为在此细胞室包含总细胞蛋白的绝大部分蛋白[144]。
2.细胞外周质表达
在细胞外周质进行蛋白质表达有许多优越之处。在外周质只有4%的总细胞蛋白,这显然有利于目的蛋白的纯化,外周质的氧化环境有利于蛋白质的正确折叠,在转移到外周质的过程中,信号肽在细胞内剪切更有可能产生目的蛋白的天然N-末端。此外,外周质中的蛋白质降解也少得多[145]。蛋白质通过内膜转运到外周质需要信号肽[146,147,148]。许多原核和真核细胞来源的信号肽已成功地用于Ecoli中蛋白质从内膜到外周质的转运。如E.coli的PhoA信号[149]、OmpA[150]、OmpT[151]、LamB和OmpF[152]以及金黄色葡萄球菌的A蛋白[153],鼠RNase[154]和人生长激素信号肽[155]等。但是,蛋白质转运到细菌外周质是一个特别复杂和尚未完全明了的过程,信号肽的存在并不总能保证有效的蛋白质通过内膜转运[156]。改善蛋白质转运到外周质的策略包括提供蛋白质转运和加工所需的成分:过量表达信号肽酶I[157],利用prlF突变株[158],共表达参与膜转运的几种蛋白质,降低蛋白质的表达水平以防止转运工具的过载[159]。
3.  细胞外分泌(外泌)
 将蛋白质分泌到细胞外是人们最期望的一种策略。因为这样容易纯化目的蛋白质,减少细菌的蛋白酶对目的蛋白质的裂解。但是,E.coli在正常情况下只有很少量的蛋白质分泌到细胞外。要解决蛋白质外泌方面的难题,必须弄清E.coli的分泌途径。Pugsley[160]对革兰氏阴性菌的分泌途径进行了详细的研究。在E.coli中将蛋白质分泌到培养基中的方法大致分为两类:(1)利用已有的“真正”的分泌蛋白所采用的途径[161];(2)利用信号肽序列、融合伴侣和具有穿透能力的因子。第一种方法具有将目的蛋白质特异性分泌的优点,并最小限度地减少了非目的蛋白的污染。最突出的例子是溶血素基因,该基因曾被用于构建分泌的杂交蛋白[162,163];第二种方法依赖于有限渗透的诱导而导致蛋白质的分泌。例如应用pelB[164]、ompA[165]和A蛋白引导序列[153,166];与细菌素释放蛋白的共表达[167];丝裂霉素诱导的细菌素释放蛋白和在培养基中添加甘氨酸[168]以及与kil基因共表达而进行膜穿透[169]。但通常情况下,外泌蛋白质的产量是中等的。有文献报道[170],在大肠杆菌表达系统中,金黄色葡萄球菌A蛋白的信号肽能引导带有E结构域的A蛋白片段或融合产物从细胞质外泌到培养基中,蛋白的外泌表达发生于细胞生长后期。但所用的启动子为A蛋白自身的启动子,该启动子在大肠杆菌中为非可控性的组成性表达,且强度较弱。如果能利用可控的强启动子进行A蛋白信号肽引导的基因表达,则有望在蛋白质外泌方面有所突破。目前我们正在进行这方面的尝试,且已经取得初步成效。
 
 密码子的使用
   原核和真核生物的基因对同义密码子的使用均表现非随机性[171,172]。对E.coli中密码子的使用频率进行系统分析得到以下结论[173]:(1)对于绝大多数的简并密码子中的一个或两个具有偏好;(2)某些密码子对所有不同的基因都是最常用的,无论蛋白质的含量多少,例如CCG是脯氨酸最常用的密码子;(3)高度表达的基因比低表达的基因表现更大程度的密码子偏好;(4)同义密码子的使用频率与相应的tRNA含量有高度相关性。这些结果暗示,富含E.coli不常用密码子(表1)的外源基因有可能在E.coli中得不到有效表达。已经证明[174],微精氨酸tRNAArg(AGG/AGA)是多种哺乳动物基因在细菌中表达的限制因子。因为AGA和AGG在E.coli中不常用。如果共表达编码tRNAArg(AGG/AGA)的argU(dnaY)基因,就会高水平表达目的蛋白[174]。但利用同方法所进行的另外几项研究的结果却不一致[175,176]。其他的研究表明,通过用常用密码子替换稀有密码子或与“稀有”tRNA基因共表达可以提高外源基因在E.coli中的表达水平[177,178]。许多研究者对有关密码子使用模式的进化意义和密码子使用效果的机制进行了研究,但至今尚未找到协调密码子的使用和转录本翻译的精确规则。似乎在转录本5’末端附近存在稀有密码子将会影响翻译效率。另外,基因5’编码区中GC含量似乎也影响其表达。这在人胸苷酸激酶(TS)中已经得到证明[179]。在不改变所编码蛋白的前提下,将TS cDNA的第三、四、五密码子的嘌呤碱基变成胸腺嘧啶,使得TS基因的表达占到E.coli中总蛋白量的25-30%。综上所述,有许多可变因素可能影响实验结果,如位置效应、稀有密码子的群集和mRNA的二级结构等等。

蛋白质的蛋白酶解
蛋白酶解是一个选择性的、高度调节的过程,该过程参与许多代谢活动。E.coli在细胞质、细胞外周质、内膜和外膜有许多蛋白酶[180,181]。这些蛋白酶参与宿主的代谢活动,如选择性地清除异常和错误折叠的蛋白。到目前为止,蛋白酶解的机制尚未完全明了,但已有一些策略和方法以减少E.coli中异源蛋白的降解。虽然使得蛋白质不稳定的精确结构特点还不清楚,但是通过系统研究已经明确了一些蛋白不稳定的决定因素。蛋白酶解途径的“N-末端规则”在E.coli中能够发挥作用,即蛋白质的稳定性与其氨基端的残基有关[182]。在E.coli中,N-末端Arg、Lys、Leu、Phe、Tyr和Trp的半衰期为2分钟,而除脯氨酸外的其他氨基酸的半衰期均超过10小时。有研究表明,在多肽的第二位带有较小侧链的氨基酸有利于甲硫氨酸氨肽酶催化的N-末端甲硫氨酸的去除,从而暴露出位于第二位的亮氨酸,使得该蛋白不稳定[183]。蛋白质的第二个决定因素是位于近氨基端的特异性内源赖氨酸残基[142,143]。该残基是多遍在蛋白链的受体,多遍在蛋白链在真核细胞中有利于遍在蛋白依赖的蛋白酶对蛋白质的降解。有趣的是在一个多遍在蛋白中,它的两个决定簇可以位于不同的亚基上,却能靶向同一个蛋白进行加工[184]。 氨基酸成分和蛋白质不稳定性的另一个关系体现在PEST假说中[185]。根据对短寿命真核蛋白的统计分析,蛋白质如果富含Pro、Glu、Ser和Thr的区域,且在该区域附近有某些特定的氨基酸,则该蛋白就会不稳定。这些PEST结构域的磷酸化导致钙的结合能力提高,从而利于钙依赖性蛋白酶对蛋白质的降解。这提示可以在缺乏PEST蛋白裂解系统的E.coli中表达PEST富含蛋白。
减少E.coli中重组蛋白裂解的策略有以下几种:(1)将蛋白质靶向细胞周质或培养基[145,186];(2)在较低的温度下培养细菌[187];(3)选用蛋白酶缺陷的菌株[188];(4)构建N-末端或C-末端融合蛋白[186];(5)将目的基因多拷贝串联[188];(6)与分子伴侣共表达[189];(7)与T4 pin基因共表达[190];(8)替换特定的氨基酸残基以消除蛋白酶裂解位点[191];(9)改善蛋白质的亲水性[192];(10)优化培养条件[193]
 
 融合蛋白表达
在E.coli中表达外源蛋白,尤其是真核蛋白时,蛋白质的稳定性是经常遇到的问题。最近几年,众多巧妙的蛋白质——融合系统的发展,为E.coli中高效表达和纯化重组蛋白提供了极大方便。融合表达具有多方面的优点:如防止包涵体的形成,促进蛋白质的正确折叠,限制蛋白酶解和利于纯化[159,194]。
Uhlen和其同事[195]利用葡萄球菌A蛋白和合成的结构域(Z)开发了一种多功能的融合伴侣,除了能够作为纯化标记外,A蛋白组分还作为一种可溶性伴侣促进蛋白质的折叠,A蛋白信号肽的存在可使表达蛋白分泌到培养基中。另一个融合伴侣是链球菌G蛋白(SPG),它是一种细菌胞壁蛋白,在其氨基端具有分离的白蛋白结合区,在OH端具有免疫球蛋白IgG结合区[196]。最小的白蛋白结合区由来源于SPG的46个氨基酸残基组成,作为亲和纯化标记纯化cDNA编码的蛋白。如果将A蛋白和SPG结构域联合组成三联融合蛋白,则为纯化提供了更为广泛的选择,可以更进一步防止蛋白酶解。SPG-白蛋白的一个重要应用是其能够稳定哺乳动物外周循环中的短寿命蛋白,这一效应是通过SPG结构域与一种长寿命蛋白——血清白蛋白的结合来介导的[197]。
最近又建立了一种更为复杂和巧妙的亲和系统[198]。这种多元系统利用了七种不同的亲和标记,从而允许使用多种结合和洗脱条件,为重组蛋白的生产、检测和纯化提供了一个有力的工具。
使用基因融合表达系统在E.coli中表达外源基因已经越来越受欢迎。这在很大程度上归因于融合系统能够产生大量的可溶性的融合蛋白。谷胱甘肽S-转移酶(GST)、麦芽糖结合蛋白(MBP)以及硫氧还蛋白(Trx)均已经被证实能非常成功地生产正确折叠、有生物活性的蛋白质,能明显提高在E.coli细胞质中产生的融合蛋白的可溶性,并能抑制包涵体的形成[159,194]。其中每一种都备有方便的纯化方法,可将融合蛋白与细胞污染物分开。已经建立了多种对融合蛋白进行位点特异性裂解的方法,方法的选择通常由特定蛋白的组成、序列及物理性质决定[199]。可采用诸如溴化氰(Met↓)、羟胺(Asn↓Gly)、等试剂或低pH(Asp↓Pro)来进行融合蛋白的化学裂解。化学裂解的方法较便宜而且有效,甚至常常可以在变性的条件下裂解非变性不能溶解的蛋白质。但有时目的蛋白中存在裂解位点,或因发生副反应而导致对蛋白质进行不必要的修饰,从而阻碍了它们的应用。作为一个备选方案,酶解的方法相对来说其反映条件较温和,更重要的是,普遍用于此用途的蛋白酶都具有高度的特异性。其中常用的酶有:Xa因子、凝血酶、肠激酶、凝乳酶和胶原酶。所有这些酶都具有较长的底物识别序列,从而降低了蛋白质中其他无关部位发生断裂的可能性。在上述提及的各种酶中,Xa因子和肠激酶应用最多,因为它们切割各自的识别序列的羧基端,使带有天然氨基酸的被融合部分得以释放。

相关热词搜索:大肠杆菌 外源蛋白

上一篇:在大肠杆菌中高效表达外源蛋白的策略(1)
下一篇:在大肠杆菌中高效表达外源蛋白的策略(3)

分享到: 收藏